non-polynomial spline method for solving coupled burgers’ equations

نویسندگان

khalid k. ali

department of mathematics, faculty of since, al-azhar univesity kamal raslan

mathematics department, faculty of science, al-azhar university, nasr-city, cairo, egypt. talaat el danaf

mathematics department, faculty of science, menoufia university, shebein el-koom, egypt.

چکیده

in this paper, non-polynomial spline method for solving coupled burgers’ equations are presented. we take a new spline function. the stability analysis using von-neumann technique shows the scheme is unconditionally stable. to test accuracy the error norms2l, ∞l are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equations. these results show that the technique introduced here is accurate and easy to apply.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-polynomial Spline Method for Solving Coupled Burgers Equations

In this paper, non-polynomial spline method for solving Coupled Burgers Equations are presented. We take a new spline function. The stability analysis using Von-Neumann technique shows the scheme is unconditionally stable. To test accuracy the error norms 2L, L are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equation...

متن کامل

A Fourier Pseudospectral Method for Solving Coupled Viscous Burgers Equations

The Fourier pseudo-spectral method has been studied for a onedimensional coupled system of viscous Burgers equations. Two test problems with known exact solutions have been selected for this study. In this paper, the rate of convergence in time and error analysis of the solution of the first problem has been studied, while the numerical results of the second problem obtained by the present meth...

متن کامل

Modified homotopy perturbation method for solving non-linear oscillator's ‎equations

In this paper a new form of the homptopy perturbation method is used for solving oscillator differential equation, which yields the Maclaurin series of the exact solution. Nonlinear vibration problems and differential equation oscillations have crucial importance in all areas of science and engineering. These equations equip a significant mathematical model for dynamical systems. The accuracy o...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

B-spline Method for Solving Fredholm Integral Equations of the First ‎Kind

‎‎‎In this paper‎, we use the collocation method for to find an approximate solution of the problem by cubic B-spline basis.‎ The proposed method as a basic function led matrix systems, including band matrices and smoothness and capability to handle low calculative costly. ‎The absolute errors in the solution are compared to existing methods to verify the accuracy and convergent nature of propo...

متن کامل

The Solution of Coupled Nonlinear Burgers' Equations Using Interval Finite-difference ‎Method

In this paper an coupled Burgers' equation is considered and then a method entitled interval finite-difference method is introduced to find the approximate interval solution of interval model in level wise cases. Finally for more illustration, the convergence theorem is confirmed and a numerical example is solved.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
computational methods for differential equations

جلد ۳، شماره ۳، صفحات ۲۱۸-۲۳۰

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023